
Pascal Documentation
Release 1.0

Riguzzi Fabrizio

Dec 11, 2023

CONTENTS

1 Introduction 1

2 Predicate Reference 3

3 Installation 5
3.1 Requirements . 5
3.2 Example of use . 5
3.3 Testing the installation . 6
3.4 Support . 6

4 Language 7

5 Use 9
5.1 Input . 9
5.2 Commands . 13
5.3 Parameters for Learning . 14

6 Example Files 17

7 Manual in PDF 19

8 License 21

9 References 23

Bibliography 25

i

ii

CHAPTER

ONE

INTRODUCTION

Pasccal is an algorithm for learning probabilistic integrity constraints. It was proposed in [RBZ+21]. It contains
modules for both structure and parameter learning.

Pascal is also available in the cplint on SWISH web application at http://cplint.eu.

1

http://cplint.eu

Pascal Documentation, Release 1.0

2 Chapter 1. Introduction

CHAPTER

TWO

PREDICATE REFERENCE

• pascal

3

https://friguzzi.github.io/pascal/pldoc/pascal.html

Pascal Documentation, Release 1.0

4 Chapter 2. Predicate Reference

CHAPTER

THREE

INSTALLATION

Pascal is distributed as a pack of SWI-Prolog. To install it, use

?- pack_install(pack).

3.1 Requirements

It requires the pack

• lbfgs

It is installed automatically when installing pack pascal or can be installed manually as

$ swipl
?- pack_install(lbfgs).

lbfgs uses a foreign library and contains the library binaries for 32 and 64 bits Linux. If you want to recompile the
foreign library you can use

?- pack_rebuild(lbfgs).

On 32 and 64 bits Linux this should work out of the box.

You can upgrade the pack with

$ swipl
?- pack_upgrade(pack).

Note that the pack on which pascal depends is not upgraded automatically in this case so it needs to be upgraded
manually.

3.2 Example of use

$ cd <pack>/pascal/prolog/examples
$ swipl
?- [bongardkeys].
?- induce_pascal([train]),T).

5

http://www.swi-prolog.org/pack/list?p=pack
http://www.swi-prolog.org/
https://github.com/friguzzi/lbfgs

Pascal Documentation, Release 1.0

3.3 Testing the installation

$ swipl
?- [library(test_pascal)].
?- test_pascal.

3.4 Support

Use the Google group https://groups.google.com/forum/#!forum/cplint.

6 Chapter 3. Installation

https://groups.google.com/forum/#!forum/cplint

CHAPTER

FOUR

LANGUAGE

A Probabilistic Constraint Logic Theory (PCLT) is a set of Probabilistic Integrity Constraints (PIC) of the form

𝑝 :: 𝐿1, . . . , 𝐿𝑏 → ∃(𝑃1); . . . ;∃(𝑃𝑛); ∀¬(𝑁1); . . . ;∀¬(𝑁𝑚)

where 𝑝 is a probability, each 𝐿𝑖 is a literal and each 𝑃𝑗 and 𝑁𝑗 is a conjunction of literals. We call each 𝑃𝑗 a P
conjunction and each 𝑁𝑘 an N conjunction. We call each ∃(𝑃𝑗) a P disjunct and each ∀¬(𝑁𝑘) an N disjunct.

The variables that occur in the body are quantified universally with scope the PIC. The variables in the head that do not
occur in the body are quantified existentially if they occur in a P disjunct and universally if they occur in an N disjunct,
with scope the disjunct they occur in.

An example of a PIC for the Bongard problems of [DRVL95]

0.5 :: 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑇), 𝑠𝑞𝑢𝑎𝑟𝑒(𝑆), 𝑖𝑛(𝑇, 𝑆) → ∃(𝑐𝑖𝑟𝑐𝑙𝑒(𝐶), 𝑖𝑛(𝐶, 𝑆));∀¬(𝑐𝑖𝑟𝑐𝑙𝑒(𝐶), 𝑖𝑛(𝐶, 𝑇))

which states that if there is a triangle inside a square then either there exists a circle inside the square or there doesn’t
exist a circle inside the triangle. This constraint has probability 0.5.

7

Pascal Documentation, Release 1.0

8 Chapter 4. Language

CHAPTER

FIVE

USE

The following learning algorithms are available:

• Parameter learning

• Structure learning

5.1 Input

To execute the learning algorithms, prepare a Prolog file divided in five parts

• preamble

• background knowledge, i.e., knowledge valid for all interpretations

• PCLT for you which you want to learn the parameters (optional)

• language bias information

• example interpretations

The preamble must come first, the order of the other parts can be changed.

For example, consider the Bongard problems of [DRVL95]. bongardkeys.pl represents a Bongard problem for Pascal.

5.1.1 Preamble

In the preamble, the Pascal library is loaded with (bongardkeys.pl):

:- use_module(library(pascal)).

Now you can initialize pascal with

:- pascal.

At this point you can start setting parameters for Pascal such as for example

:-set_pascal(examples,keys(pos)).
:-set_pascal(learning_algorithm,gradient_descent).
:-set_pascal(learning_rate,fixed(0.5)).
:-set_pascal(verbosity,1).

9

http://cplint.eu/example/pascal/bongardkeys.pl
http://cplint.eu/e/pascal/bongardkeys.pl

Pascal Documentation, Release 1.0

We will see later the list of available parameters.

A parameter that is particularly important for Pascal is verbosity: if set to 1, nothing is printed and learning is fastest,
if set to 3 much information is printed and learning is slowest, 2 is in between. This ends the preamble.

5.1.2 Background and Initial PCLT

Now you can specify the background knowledge by including a set of Prolog clauses in a section between :-
begin_bg. and :- end_bg. For example

:- begin_bg.
in(A,B) :- inside(A,B).
in(A,D) :- inside(A,C),in(C,D).
:- end_bg.

Moreover, you can specify an initial PCLT in a section between :- begin_in. and :- end_in.. The initial program
is used in parameter learning for providing the structure. In the section, facts for the predicates rule/2 or ic/1 can
be given.

Facts for rule/2 take the form rule(ic,prob)where prob is a probability and ic is a term of the form head:-body.
In it, body is a list of literals and head is a list of head disjuncts. Each head disjunct is couple (sign,conjunction)
where sign is either (+) for P disjuncts or (-) for N disjuncts and conjunction is a list of literals.

The example of a PIC above can be expressed as

:- begin_in.
rule(([((+),[circle(C),in(C,S)]),((-),[circle(C),in(C,T)])]:-
[triangle(T),square(S),in(T,S)]),0.5).

:- end_in.

Facts for the predicate ic/1 take the form ic(string) where string is a Prolog string wher a constraint is encoded
as prob::body--->head. body is a conjuntion of literals where the conjunction symbol is /\ . head is a disjunction
where the disjunction symbol is \/. Each disjunct is either a conjunction of literals, in the case of a P disjunct, or of
the form not(conjunction) where conjunction is a conjunction of literals.

The example of a PIC above can be expressed as

:- begin_in.
ic("0.5 :: triangle(T)/\\square(S)/\\in(T,S)
--->
circle(C)/\\in(C,S)
\\/
not(circle(C)/\\in(C,T)).").
:- end_in.

10 Chapter 5. Use

Pascal Documentation, Release 1.0

5.1.3 Language Bias

The language bias part is specified by means of mode declarations in the style of Progol.

modeh(<recall>,<predicate>(<arg1>,...)).

specifies the atoms that can appear in the head of clauses, while

modeb(<recall>,<predicate>(<arg1>,...)).

specifies the atoms that can appear in the body of clauses. <recall> can be an integer or *. <recall> indicates how
many atoms for the predicate specification are considered. * stands for all those that are found. Otherwise the indicated
number is randomly chosen.

Arguments of the form

+<type>

specifies that the argument should be an input variable of type <type>, i.e., a variable replacing a +<type> argument
in the head or a -<type> argument in a preceding literal in the current hypothesized clause.

Another argument form is

-<type>

for specifying that the argument should be a output variable of type <type>. Any variable can replace this argument,
either input or output. The only constraint on output variables is that those in the head of the current hypothesized
clause must appear as output variables in an atom of the body.

Other forms are

#<type>

for specifying an argument which should be replaced by a constant of type <type>

<constant>

for specifying a constant.

An example of language bias for the Bongard domain is

modeh(*,triangle(+obj)).
modeh(*,square(+obj)).
modeh(*,circle(+obj)).
modeh(*,in(+obj,-obj)).
modeh(*,in(-obj,+obj)).
modeh(*,in(+obj,+obj)).
modeh(*,config(+obj,#dir)).
modeb(*,triangle(-obj)).
modeb(*,square(-obj)).
modeb(*,circle(-obj)).
modeb(*,in(+obj,-obj)).
modeb(*,in(-obj,+obj)).
modeb(*,config(+obj,#dir)).

5.1. Input 11

https://www.doc.ic.ac.uk/~shm/progol.html

Pascal Documentation, Release 1.0

5.1.4 Example Interpretations

The last part of the file contains the data. You can specify data with two modalities: models and keys. In the
models type, you specify an example model (or interpretation or megaexample) as a list of Prolog facts initiated by
begin(model(<name>)). and terminated by end(model(<name>)). as in

begin(model(2)).
pos.
triangle(o5).
config(o5,up).
square(o4).
in(o4,o5).
circle(o3).
triangle(o2).
config(o2,up).
in(o2,o3).
triangle(o1).
config(o1,up).
end(model(2)).

The facts in the interpretation are loaded in SWI-Prolog database by adding an extra initial argument equal to the name
of the model. After each interpretation is loaded, a fact of the form int(<id>) is asserted, where id is the name of
the interpretation. This can be used in order to retrieve the list of interpretations.

Alternatively, with the keys modality, you can directly write the facts and the first argument will be interpreted as a
model identifier. The above interpretation in the keys modality is

pos(2).
triangle(2,o5).
config(2,o5,up).
square(2,o4).
in(2,o4,o5).
circle(2,o3).
triangle(2,o2).
config(2,o2,up).
in(2,o2,o3).
triangle(2,o1).
config(2,o1,up).

which is contained in the bongardkeys.pl. This is also how model 2 above is stored in SWI-Prolog database. The two
modalities, models and keys, can be mixed in the same file. Facts for int/1 are not asserted for interpretations in the
key modality but can be added by the user explicitly.

In order to specify if an interpretation is positive or negative, you should include in the interpretation a fact. The form
of the fact dependes on the parameter examples whose values are {auto, keys(pred)}. If set to auto, positive
examples in the models format should contain a pos fact and in the keys format a pos(id) fact, where id is the
identifier of the interpretation. If set to keys(pred), pred or pred(pos) (pred(id) or pred(id,pos) in the keys
format) is used instead of pos to determine positive exmples.

Then you must indicate how the examples are divided in folds with facts of the form: fold(<fold_name>,<list of
model identifiers>), as for example

fold(train,[2,3,...]).
fold(test,[490,491,...]).

As the input file is a Prolog program, you can define intensionally the folds as in

12 Chapter 5. Use

http://cplint.eu/e/bongardkeys.pl

Pascal Documentation, Release 1.0

fold(all,F):-
findall(I,int(I),F).

which however must be inserted after the input interpretations otherwise the facts for int/1 will not be available and
fold all would be empty.

5.2 Commands

5.2.1 Parameter Learning

To execute parameter learning, prepare an input file as indicated above and call

?- induce_par_pascal(<list of folds>,T).

where <list of folds> is a list of the folds for training and T will contain the input theory with updated parameters.

For example bongardkeys.pl, you can perform parameter learning on the train fold with

?- induce_par_pascal([train],P).

5.2.2 Structure Learning

To execute structure learning, prepare an input file in the editor panel as indicated above and call

induce(+List_of_folds:list,-T:list) is det

where List_of_folds is a list of the folds for training and T will contain the learned PCLT.

For example bongardkeys.pl, you can perform structure learning on the train fold with

?- induce([train],P).

A PCLT can also be tested on a test set with test_pascal/7 or test_prob_pascal/6 as described below.

5.2.3 Testing

A PCLT can also be tested on a test set with

test_pascal(+T:list,+List_of_folds:list,-LL:float,-AUCROC:float,-ROC:list,-AUCPR:float,-
→˓PR:list) is det

or

test_prob_pascal(+T:list,+List_of_folds:list,-NPos:int,-NNeg:int,-LL:float,-
→˓ExampleList:list) is det

where T is a list of terms representing clauses and List_of_folds is a list of folds.

test_pascal/7 returns the log likelihood of the test examples in LL, the Area Under the ROC curve in AUCROC, a
dictionary containing the list of points (in the form of Prolog pairs x-y) of the ROC curve in ROC, the Area Under the
PR curve in AUCPR, a dictionary containing the list of points of the PR curve in PR.

5.2. Commands 13

http://cplint.eu/e/pascal/bongardkeys.pl
http://cplint.eu/e/pascal/bongardkeys.pl

Pascal Documentation, Release 1.0

test_prob_pascal/6 returns the log likelihood of the test examples in LL, the numbers of positive and negative
examples in NPos and NNeg and the list ExampleList containing couples Prob-Ex where Ex is a for a a positive
example and \+(a) for a a negative example and Prob is the probability of example a.

Then you can draw the curves in cplint on SWISH using C3.js using

compute_areas_diagrams(+ExampleList:list,-AUCROC:float,-ROC:dict,-AUCPR:float,-PR:dict)␣
→˓is det

(from pack auc.pl) that takes as input a list ExampleList of pairs probability-literal of the form that is returned by
test_prob_pascal/6.

For example, to test on fold test the program learned on fold train you can run the query

?- induce_par([train],P),
test(P,[test],LL,AUCROC,ROC,AUCPR,PR).

Or you can test the input program on the fold test with

.. code:: prolog

?- in(P),test(P,[test],LL,AUCROC,ROC,AUCPR,PR).

In cplint on SWISH, by including

.. code:: prolog

:- use_rendering(c3). :- use_rendering(lpad).

in the code before :- pascal. the curves will be shown as graphs using C3.js and the output program will be pretty
printed.

5.3 Parameters for Learning

Parameters are set with commands of the form

:- set_pascal(<parameter>,<value>).

The available parameters are:

• examples: (values: {auto, keys(pred)}, default value: auto) if set to auto, positive examples in the mod-
els format should contain a pos fact and in the keys format a pos(id) fact, where id is the identifier of the
interpretation. If set to keys(pred), pred is used instead of pos to determine positive exmples

• beamsize (values: integer, default value: 10): size of the beam

• verbosity (values: integer in [1,3], default value: 1): level of verbosity of the algorithms.

• max_nodes (values: integer, defualt value: 10): maximum number of iteration of beam search

• optimal (values: {yes, no}, default value: no): whether ther refinement operator is optimal or not

• max_length (values: integer, defualt value: 4): maximum number of body literals and head disjuncts

• max_lengths (values: list of integers [Body,Disjuncts,LitIn+,LitIn-], defualt value: [1,1,1,0]):
maximum number of, respectively, body literals, head disjuncts, literals in P disjuncts and literals in N disjuncts

• max_initial_weight (values: real, default value 0.1): absolute value of the maximum of the initial weights
in weight learning.

14 Chapter 5. Use

http://www.swi-prolog.org/pack/list?p=auc

Pascal Documentation, Release 1.0

• learning_algorithm (values: {gradient_descent, lbfgs}, default value: gradient_descent): algo-
rithm for parameter learning

• random_restarts_number (values: integer, default value: 1): number of random restarts for gradient descent
parameter learning

• learning_rate (values: {fixed(value),decay(eta_0,eta_tau,tau)}, default value: fixed(0.01)):
value of the learning rate, either fixed to a value or set with a decay strategy

• gd_iter (values: integer, default value: 1000): maximum number of gradient descent iterations

• epsilon (values: real, default value: 0.0001): if the difference in the log likelihood in two successive parameter
gradient descent iterations is smaller than epsilon, then the algorithm stops

• epsilon_fraction (values: real, default value: 0.00001): if the difference in the log likelihood in
two successive parameter gradient descent iterations is smaller than epsilon_fraction*(-current log
likelihood), then the algorithm stops

• regularization (values: {1,2}, default value: 2): either L1 or L2 regularization in gradient descent and lbfgs

• regularizing_constant (values: real, default value: 5): value of the regularizatiom constant in gradient
descent and lbfgs

• max_rules (values: integer, default value: 10): maximum number of PIC in the final theory

• logzero (values: negative real, default value log(0.01): value assigned to log(0)

• zero (values: positive real, default value 0.0001: value assigned to 0 when computing denominators that are
counts

• minus_infinity (values: negative real, default value -1.0e20: value assigned to −∞, used as the intial value
of the log likelihood in parameter learning

5.3. Parameters for Learning 15

Pascal Documentation, Release 1.0

16 Chapter 5. Use

CHAPTER

SIX

EXAMPLE FILES

The pack/pascal/prolog/examples folder in SWI-Prolog home contains some example programs. The pack/
pascal/docs folder contains this manual in html and pdf.

17

Pascal Documentation, Release 1.0

18 Chapter 6. Example Files

CHAPTER

SEVEN

MANUAL IN PDF

A PDF version of the manual is available at http://friguzzi.github.io/pascal/_build/latex/pascal.pdf.

19

http://friguzzi.github.io/pascal/_build/latex/pascal.pdf

Pascal Documentation, Release 1.0

20 Chapter 7. Manual in PDF

CHAPTER

EIGHT

LICENSE

Pascal follows the BSD 2-Clause License that you can find in the root folder. The copyright is by Fabrizio Riguzzi.

21

Pascal Documentation, Release 1.0

22 Chapter 8. License

CHAPTER

NINE

REFERENCES

23

Pascal Documentation, Release 1.0

24 Chapter 9. References

BIBLIOGRAPHY

[DRVL95] L. De Raedt and W. Van Laer. Inductive constraint logic. In Proceedings of the 6th Conference on Algo-
rithmic Learning Theory (ALT 1995), volume 997 of LNAI, 80–94. Fukuoka, Japan, 1995. Springer.

[RBZ+21] Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese, Marco Alberti, and Evelina Lamma. Probabilistic induc-
tive constraint logic. Machine Learning, 110:723–754, 2021. doi:10.1007/s10994-020-05911-6.

25

https://doi.org/10.1007/s10994-020-05911-6

	Introduction
	Predicate Reference
	Installation
	Requirements
	Example of use
	Testing the installation
	Support

	Language
	Use
	Input
	Preamble
	Background and Initial PCLT
	Language Bias
	Example Interpretations

	Commands
	Parameter Learning
	Structure Learning
	Testing

	Parameters for Learning

	Example Files
	Manual in PDF
	License
	References
	Bibliography

